Jundishapur Journal of Chronic Disease Care

Published by: Kowsar
Crossmark
Uncorrected Proof scheduled for 8 (3)

Early Diagnosis of Diabetes Mellitus Using Data Mining and Classification Techniques

Seyed Ataaldin Mahmoudinejad Dezfuli ORCID 1 , * , Seyedeh Razieh Mahmoudinejad Dezfuli 2 , Seyed Vafaaldin Mahmoudinejad Dezfuli 1 and Younes Kiani ORCID 2
Authors Information
1 Technology Development Center, Dezful University of Medical Sciences, Dezful, Iran
2 Islamic Azad University of Dezful, Dezful, Iran
Article information
  • Jundishapur Journal of Chronic Disease Care: In Press (In Press); e94173
  • Published Online: July 14, 2019
  • Article Type: Research Article
  • Received: May 21, 2019
  • Revised: June 26, 2019
  • Accepted: July 5, 2019
  • DOI: 10.5812/jjcdc.94173

To Cite: Mahmoudinejad Dezfuli S A, Mahmoudinejad Dezfuli S R, Mahmoudinejad Dezfuli S V, Kiani Y. Early Diagnosis of Diabetes Mellitus Using Data Mining and Classification Techniques, Jundishapur J Chronic Dis Care. Online ahead of Print ; In Press(In Press):e94173. doi: 10.5812/jjcdc.94173.

Abstract
Copyright © 2019, Jundishapur Journal of Chronic Disease Care. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
Footnotes
References
  • 1. Zarkogianni K, Litsa E, Mitsis K, Wu PY, Kaddi CD, Cheng CW, et al. A review of emerging technologies for the management of diabetes mellitus. IEEE Trans Biomed Eng. 2015;62(12):2735-49. doi: 10.1109/TBME.2015.2470521. [PubMed: 26292334]. [PubMed Central: PMC5859570].
  • 2. World Health Organization. Global report on diabetes. Geneva: World Health Organization; 2016. Available from: http://www.who.int/diabetes/global-report/en/..
  • 3. Lee BJ, Ku B, Nam J, Pham DD, Kim JY. Prediction of fasting plasma glucose status using anthropometric measures for diagnosing type 2 diabetes. IEEE J Biomed Health Inform. 2014;18(2):555-61. doi: 10.1109/JBHI.2013.2264509. [PubMed: 24608055].
  • 4. Kor LK, Ahmad AR, Idrus Z, Mansor KA. Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017). Singapore: Springer; 2019.
  • 5. Simon GJ, Caraballo PJ, Therneau TM, Cha SS, Castro MR, Li PW. Extending association rule summarization techniques to assess risk of diabetes mellitus. IEEE Trans Knowl Data Eng. 2015;27(1):130-41. doi: 10.1109/tkde.2013.76.
  • 6. WHO/IDF. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: Report of a WHO/IDF consultation. World Health Organization; 2006. Available from: https://www.who.int/diabetes/publications/Definition%20and%20diagnosis%20of%20diabetes_new.pdf.
  • 7. Barakat NH, Bradley AP, Barakat MN. Intelligible support vector machines for diagnosis of diabetes mellitus. IEEE Trans Inf Technol Biomed. 2010;14(4):1114-20. doi: 10.1109/TITB.2009.2039485. [PubMed: 20071261].
  • 8. Senthil Kumar B, Rajapandi P, Sridar K, Shanthi D. Mobile based medical diagnosis system using Ann-Arm for the diabetes mellitus. Int J Innovative Sci Eng Technol. 2015;2(4).
  • 9. Lee CS, Wang MH. A fuzzy expert system for diabetes decision support application. IEEE Trans Syst Man Cybern B Cybern. 2011;41(1):139-53. doi: 10.1109/TSMCB.2010.2048899. [PubMed: 20501347].
  • 10. International Diabetes Federation. IDF Diabetes Atlas, 5th ed. Brussels, Belgium: International Diabetes Federation; 2011. Available from: http://www.idf.org/diabetesatlas.
  • 11. Lee BJ, Kim JY. Identification of type 2 diabetes risk factors using phenotypes consisting of anthropometry and triglycerides based on machine learning. IEEE J Biomed Health Inform. 2016;20(1):39-46. doi: 10.1109/JBHI.2015.2396520. [PubMed: 25675467].
  • 12. Thirumal PC, Nagarajan N. Utilization of data mining techniques for diagnosis of diabetes mellitus-a case study. ARPN J Eng Appl Sci. 2015;10(1):8-13.
  • 13. Lorenzo C, Serrano-Rios M, Martinez-Larrad MT, Gonzalez-Villalpando C, Williams K, Gabriel R, et al. Which obesity index best explains prevalence differences in type 2 diabetes mellitus? Obesity (Silver Spring). 2007;15(5):1294-301. doi: 10.1038/oby.2007.151. [PubMed: 17495206].
  • 14. Marinov M, Mosa AS, Yoo I, Boren SA. Data-mining technologies for diabetes: A systematic review. J Diabetes Sci Technol. 2011;5(6):1549-56. doi: 10.1177/193229681100500631. [PubMed: 22226277]. [PubMed Central: PMC3262726].
  • 15. De Silva LHS, Pathirage N, Jinasena TMKK. Diabetic prediction system using data mining. Proceedings in Computing, 9th International Research Conference-KDU. Sri Lanka. 2016.
  • 16. Tafa Z, Pervetica N, Karahoda B. An intelligent system for diabetes prediction. 4thMediterranean Conference on Embedded Computing MECO. Budva, Montenegro. 2015. p. 378-82.
  • 17. Han L, Luo S, Yu J, Pan L, Chen S. Rule extraction from support vector machines using ensemble learning approach: An application for diagnosis of diabetes. IEEE J Biomed Health Inform. 2015;19(2):728-34. doi: 10.1109/JBHI.2014.2325615. [PubMed: 24860043].
  • 18. Saxena K, Sharma R. Diabetes mellitus prediction system evaluation using C4.5 rules and partial tree. Noida, India. IEEE; 2015. p. 1-6.
  • 19. Blake CL, Merz CJ. UCI repository of machine learning databases. Irvine: University of California; 1998.
  • 20. Quinlan JR. Induction of decision trees. Mach Learn. 1986;1(1):81-106. doi: 10.1007/bf00116251.
  • 21. Hechenbichler K, Schliep K. Weighted k-nearest-neighbor techniques and ordinal classification. Col Res Center. 2004. doi: 10.5282/ubm/epub.1769.
  • 22. Taylor AP, Webb RI, Barry JC, Hosmer H, Gould RJ, Wood BJ. Adhesion of microbes using 3-aminopropyl triethoxy silane and specimen stabilisation techniques for analytical transmission electron microscopy. J Microsc. 2000;199(Pt 1):56-67. [PubMed: 10886529].
  • 23. Freedman DA. Statistical models: Theory and practice. Cambridge University Press; 2009. 128 p. doi: 10.1017/cbo9780511815867.

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments